
their mean values tl, t2, t3 = tt.s; tt.s, set temperature of the sensor; P, pmax, mean 
and maximal power, respectively, of the final control element; T, period of free oscillations; 
Tl, ~2, cooling and heating time, respectively, of the chamber; A I, A 2, amplitudes of the 
temperature oscillations of the object and of the chamber, respectively; y, duty factor of 
the operation of the final control element. 
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SIMULATING THE COOLING OF SPIRAL COMPONENTS IN CIRCULATION 

SYSTEMS FOR GAS COOLING. PART i. SINGLE PANCAKE COIL 

B. A. Vakhnenko, V. I. Deer, 
and A. V. Filippov 

UDC 536.24:537.312.62 

A study has been made of the effects of design and thermal parameters on 
the temperature patterns and cooling times for pancake coils. 

A large superconducting magnet with circulating coolant is frequently built up from 
two-layer disk sections [i-3]; each layer or pancake is a flat (archimedean) spiral formed 
out of insulated hollow wire and embedded in epoxide resin. The cooling channels in adjacent 
pancakes are usually connected in parallel. The pancake coils in equipments may differ in 
design, conductor length, number of turns, and insulating material and thickness~ There 
is heat transfer through the insulation between turns and between coils, which sometimes 
has a substantial effect on the cooling. The mode of cooling must be chosen such that no 
dangerous thermal stresses arise, while the cooling time and coolant consumption are ac- 
ceptable. It is possible to choose a state meeting these requirements by solving the non- 
stationary conjugate heat-transfer problem. The term conjugate here incorporates the fact 
that it is necessary to solve the energy-conservation equations together for all the compo- 
nents in the heat-transfer system (channel walls and flows) [4, 5]. 

The cooling of a single adiabatic channel has been examined in most detail (with ideal 
insulation between turns for a spiral). If the thermal parameters and coolant flow rate are 
constant, one can obtain an analytic solution if the coolant temperature at the inlet 
changes stepwise [4]. To allow for the change in heat-transfer coefficient along the channel 
and for the temperature dependence of the thermophysical parameters, one has to use numeri- 
cal methods such as [6, 7] to solve the problem with general boundary conditions. 

It is recommended [8, 9] that the dimensionless parameter St* = =HL/(GcD) ~ should be used 
in distinguishing long channels (St* ~ 100) from short ones (St* i i0); lo~g~means that the 
zone of rapid heat transfer is substantially shorter than the channel, so one can use a tem- 
perature-step model to calculate the cooling [i0], which can be used with a coolant inlet 
temperature step to estimate the cooling time from T b = (Mc)w/(Gcp)g , which follows from the 
heat-balance equation, and also to determine the pressure drop or coolant flow rate. A for- 
mula has been given [9] for the cooling time for a short channel. 

An analytin solution can also be obtained [5, ii] for two parallel long channels with 
thermal interaction; solutions have been obtained for direct-flow and countercurrent forms of 
coolant motion for constant thermophysical parameters of the coolant wall, infinitely small 
thermal capacity of the bridge between channels, and inlet coolant temperature steps. In 
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Fig. 2 
Fig. i. Effects of K = %HL/((Gcp)g6N) on the temperature patterns 
on cooling a spiral channel St* ! I00, N = i0) with a step change in 
inlet coolant temperature: a) K = 0.i; i) t = 0.2; 2) 0.6; 3) 1.0; 
4) 1.4; b) K = 1.5; i) t = 0.2; 2) 0.6; 3) 1.0; 4) 1.6; c) K = 7; i) 
t = 0.05; 2) 0.6; 3) 1.0; 4) 2.4. 

Fig. 2. Effects of k = %Hs on the dimensionless cooling 
time for a spiral channel: i) N ~ i0; 2) 30; 3) 50; 4) @max = 0.01; 
5) 0.05; 6) O.i. 

[7], a similar problem was solved numerically with more general assumptions. In [ii], a 
study was made of the effects of heat transfer between long channels on the cooling in the 
presence of hydraulic nonuniformities. A formula was recommended for estimating the cooling 
time as a function of the thermal resistance in the insulation between channels. 

A method has been given [12-14] for calculating the cooling in cryostatic systems hav- 
ing spiral channels; here there are some special features by comparison with those in adiaba- 
tic channels on account of the heat transfer between the turns via the insulation and the pe- 
riodic spiral structure. Simple estimates show that the heat leak between turns in the super- 
conducting magnet substantially exceeds the heat flux due to longitudinal conduction and may 
be comparable with the convective component. In [13, 14], calculations were compared with 
experiment for an experimental component simulating a pancake coil for a superconducting wind- 
ing producing a toroidal field in a T-15 thermonuclear system. 

Here we examine the effects from various thermophysical and working parameters with 
allowance for the nonuniformity in coolant distribution in parallel spiral pancakes. The 
first part of the paper deals with a single spiral pancake coil. 

As there is good agreement between theory and experiment [13, 14], the cooling for a 
single pancake at a constant flow rate (G = constant) may be described by the system 

(mc)~ OT~ = ~l-I (Tg - -  T~) + ~ ~- qz ; 

(Gcv)g OTg _ ~zII (T,~ - -  Tg); 
Ox 

(i) 

T w (x, O) = r i n i ;  Tg (0, x) = ~ (x), 

where 

q e  
T w , i _  I - -  2T~,~ + Tw, i+  1 

Rr 
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is the heat influx to turn i from adjacent turns i - 1 and i + i. Here the thin-tube ap- 
proximation is used for the solid, while a one-dimensional flow model is used for the coolant. 
The x coordinate is directed along the channel. Heat transfer between the channel wall and 
the coolant is determined by the heat-transfer coefficient a, while the heat leaks between 
adjacent turns are determined by the thermal resistance per unit length of the conductor R T = 
6/(XH).  

For  St* ~ 100 (1)  can be s i m p l i f i e d  [13, 14]:  

aT~ (mc)w OT__..~w + (Gcp)g ~ = ~ + qa; 
o~ ax (2) 

T~ (x, o) = Tini; T~ (o, ~) = ~ (~). 

We re duc e  (1)  and (2)  to  d i m e n s i o n l e s s  form to  a n a l y z e  the  e f f e c t s  o f  the  f a c t o r s  on the  
c o o l i n g ,  where we f o l l o w  [15] in  u s ing  t h e  q u a n t i t i e s  appea r ing  in  t h e  un iqueness  c o n d i t i o n s  
as s c a l e  f a c t o r s .  The s p a t i a l  s c a l e  i s  p r o v i d e d  by t he  mean l e n g t h  1 o f  a s p i r a l  t u r n  v i a  
1 = L/N (1 d e t e r m i n e s  t he  h e a t - t r a n s f e r  s u r f a c e  between a d j a c e n t  t u r n s ) ,  whi l e  t he  t ime s c a l e  
i s  p r o v i d e d  by t he  b a l a n c e  c o o l i n g  t ime f o r  t he  channe l  T b = (Mc)w/(Gcp)g,  and t he  temper-  
a t u r e - d i f f e r e n c e  s c a l e  i s  p r o v i d e d  by aT - T in i  - T f i n .  We i n t r o d u c e  t he  d i m e n s i o n l e s s  ex-  
ces s  temperatures of the wall 0 = (T w - Tfin)/(Tin i -- Tfi n) and the coolant ~ = (Tg - Tfin)/ 
(Tin i - Tfin) , as well as the dimensionless independent variables t = T/~ b and X = x/k; we 
substitute these into (i) and (2) to get 

1 ao St* 
N at N 

a@ St* 
- - -  ( o -  ~); 

ox  N 

(~--  @) + Qe + QE 

( 3 )  

o (x ,  o) = I; o (o, t) = ~ (t); 

for St* > i00 

where 

1 30  30  

N o---7- + ax - q~+ Q'-; 
o ( x ,  o) = 1; o (o, t) = ~ (t), (~) 

QC : qc[ " ; QL qL I ; QC =:: K ( O ] -  1 - -  20i -~ @~'~-1); (Ocp)gAT (Ocp)gAT 
t LHL ]( = = 

(Gcp)gRr (Gcp)g~N 

We consider the generalized independent variables and the dimensionless parameters appear- 
ing in the description. As t is normalized to ~b, the time required for an adiabatic chan- 
nel to be cooled with the ideal use of cold, the meaning of the dimensionless cooling time 
is the relative excess of the actual cooling time over the value most favorable from the view- 
point of coolant consumption. 

The variable X = x/~ is normalized to the length of an average turn, so the total dimen- 
sionless channel length coincides numerically with the number N of turns. 

The definitive dimensionless parameters are St*, QL, K, N; the modified Stanton parameter 
St* characterizes the heat transfer between the channel wall and the coolant. QL is the di- 
mensionless heat load per unit length due to external heat leaks. The dimensionless heat 
flux due to heat transfer between the turns Qc is dependent on K, which characterizes the 
rate of heat transfer through the insulation between turns. One can treat K as the dimension- 
less thermal conductivity of the insulation between adjacent turns. 

In [12-14] it has been found that heat transfer between turns has a substantial effect on 
the temperature patterns in cooling spiral channels; the rate of that transfer determined 
whether the temperature profile is similar to that for an adiabatic channel or differs consi- 
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derably from it. If there is sufficiently rapid transfer between turns, one can get a wave- 
type temperature distribution along the channel, with a peak on the temperature profile in a 
turn. The amplitude of the temperature wave decreases as time elapses and also away from 
the inlet. Calculations have been made with variable K from (4) for long channels with vari- 
ous N (N = I0; 20; 30; 40) on the assumption of an inlet coolant temperature step and the 
absence of external heat leaks (QL = 0), which has shown that similar temperature patterns 
arise for the same values of K in spirals differing in number of turns, so one can identify 
three characteristic ranges in K as regards the effects on the temperature patterns: K J 0.i 
little effect, 0.i < K < 2 moderate effect, and K > 2 marked effect. 

When K J 0.i, the patterns and the cooling time are close to those for the long adiabatic 
channel, with a temperature wave and with the dimensionless time close to one (Fig. la). 

In the case Qf moderate effects, the active heat-transfer zone is comparable in length 
with the channel (Fig. ib) and the dimensionless time is about two. 

In the region of marked effect, there is a temperature wave in the initial stage (Fig. ic) 
and the dimensionless time is greater than two. 

Figure 1 shows that the wall temperature at the outlet at the start (t < i) decreaSes 
more rapidly than for an adiabatic channel as K increases, which reduces the amount of heat 
transferred to the coolant in unit time and is the cause of the increase in cooling time. 

The value of N affects the cooling rate, which is dependent on K as well as N. The 
cooling is more rapid if there is high resistance to heat transfer between turns, as that 
transfer reduces the cooling rate. Calculations with K variable for St* ~ I00 and inlet 
temperature steps have been performed with (4) for various spirals (N = i0; 30; 50) (Fig. 2), 
which has shown that the dimensionless time is the same for different spirals if k = K/N is 
the same. 

Here we may note that k = K/N = ~Hs is the dimensionless heat-transfer coeffi- 
cient via N turns along the radius of the pancake. The heat flux due to exchange between 
turns is the same for different spirals if k = K/N is the same for them, and such spirals 
cool at the same rate and have the same dimensionless cooling time. 

As the cooling is asymptotic, the complete cooling time strictly speaking is infinite. 
Therefore, when one mentions the cooling time, one must also state the maximum wall tem- 
perature corresponding to a given instant. Figure 2 shows that the cooling time increases 
considerably with the depth of cooling. The following relations enable one to estimate the 
cooling times for long channels with inlet temperature steps and various cooling depths: 

to(@ = 0,01) : 1,24 + 9,98k ~  6,18k ~ - -  1,12k~ ( 5 )  

to(O = 0,05) : 1,14 + 8,71k ~  ~  ~ ; ( 6 )  

to(O = 0,1) = 1,04 + 9,46k ~  5,47k ~  2,89k ~ �9 ( 7 )  

The cooling time for an adiabatic channel at high St* is close to the minimal limiting 
value ~b = (Mc)w/(Gcp)g; a practical criterion for using this formula is St* ~ i00, since 
for St* < i00 the cooling time for an adiabatic channel increases because of deterioration 
in heat transfer from the wall to the coolant and correspondingly reduction in the heating 
of the latter along the channel. Heat transfer between turns reduces the wall temperature 
at the outlet but also reduces the coil cooling rate. Figure 3 shows the dimensionless 
cooling time as a function of St* for various values of k. The calculations have been per- 
formed from (3) for an inlet coolant temperature step. The time decreases as St* increases, 
with the curves tending to two values whose level is dependent on k. The St* at which each 
curve comes close to the asymptotic value is not more than about i00 for all k; the effects 
of St* on the cooling time in the range i0 < St* < I00 become less pronounced as k increases. 
The formula for the cooling time for St* > I0, 0 < k < 2 can then be put as 

t ( s t* ,  k) = to (k) + At (st*, ~), ( 8 )  
where t(St*, k) is that s t0(k) is the time for a long channel calculated from (5)-(7), 
and At(St*, k) is the correction for St*. 

One can approximate At(St*, k) satisfactorily as 

At (St*, k) = A (k) F(St*),  ( 9 )  
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Fig. 3. Cooling time for a spiral channel down to a maximal temperature @max = 
0.01 as a function of St* and k: i) k = 0; 2) 0.02; 3) 0.05; 4) 0.i; 5) 0.2; 
6) 0 .4 ;  7) 1.0;  8) 1.3;  9) 2 .0 .  

Fig. 4. Effects of n on cooling time (solid line from (4), dashed line from 
( 1 0 ) ) :  1) K = 10; 2) 1; 3) 0 .1 .  

A (k) = 0,124 - -  0,27 exp (-- k) + 0,83 exp (-- I0 k) + 0,30 exp (-- 25 k) + 0,31 exp (-- k~); 

( St* ,~-2,3 ( St* / -''6 ( St* t -j,!5 
F(St*) = 0,51 + 2,07 L ~  ) + 0,56 k , ~ /  - -  2,13 \--.-~-1 . 

A general specification is that the difference between the inlet coolant temperature 
and the maximum temperature of the spiral should not exceed a permissible value ATper, which 
in some cases requires preliminary cooling with the coolant temperature gradually ~alling. 
Out of the modes of inlet temperature variation, the best is that where the temperature dif- 
ference is somewhat less than the limiting permissible value, i.e., Tin = Tin i - ATpe r + s, 
where s is a temperature margin. As the outlet temperature falls, the inlet temperature is gradually 
reduced in such a way that the maximum temperature difference remains close to AT = (ATpe r -- E). The 
amount of heat extracted is then close to the maximum possible. Figure 4 shows the cooTing time as 
a function of the number of temperature intervals n for various values of K. The value of n 
is the integer part of (T o - Tfin)/(ATpe r - E). The calculations are based on (4). The 
dashed line shows calculations on the cooling time for variable inlet temperature from 

7 = n + to (k), (10) 

where t is the dimensionless cooling time for a variable inlet temperature, n is the number 
of temperature intervals, and t0(k) is the cooling time for a long spiral for an inlet tem- 
perature step as calculated from (5)-(7). Figure 4 shows that (I0) agrees satisfactorily 
with (4); (i0) can be used in estimating the minimum cooling time with a variable inlet tem- 
perature and a preset permissible temperature difference between inlet and outlet. 

These results can be used in analyzing the cooling of a superconducting toroidal wind- 
ing for the T-15 tokamak. Calculations from (5)-(10) showed that the cooling time with a 
flow rate G~ = 0.6-10 -3 kg/sec through a pancake is dependent to a considerable extent on n 
(i.e., on ATpe r) and is 38 h for &Tpe r = 70 K, 56 h for ATpe r = 45 K and 78 h for ATpe r = 
30 K. A change in the thermal resistance between turns by a factor two has little effect 
on the cooling time. 

NOTATION 

c, specific heat capacity, J/(kg-K); G, mass flow rate, kg/sec; H, pancake width, m; i, 
No. of turn; K = XHL/((Gc ) 6N), k = XHs ) 6N), dimensionless parameters; L, s cooling Pg P$ 
channel length and mean length of turn, respectively, m; M, mass, kg; m, mass per unit length 
of the channel, kg/m; N, number of turns; Q, q, dimensionless and dimensional (W/m) heat 
load per unit length; R T = 6/%H, thermal resistance per unit length of the coil insu- 
lation, K-m/W; T, temperature, K; AT, temperature difference, K; t, dimensionless time; 
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X, x, dimensionless and dimensional (m) space coordinates; ~, heat-transfer coefficient 
W/(m2"K); 6, thickness of the coil insulation, m; ~, thermal conductivity of the in- 

sulation, W/(m'K); 0 = (T w - Tfin)/(Tin i - Tfin), % = (Tg - Tfin)/(Tin i - Tfw), dimen- 
sionless excess temperature of the wall and coolant, respectively; H, heat transfer 
perimeter, m; r known time function; ~, time, sec; ~b, balance time of cooling, sec; St* = 
eNL/(Gcp)g modified Stanton parameter. Subscripts: w, wall; g, coolant; p, at constant pres- 
sure; int, fin, initial and finite states, respectively; per, permissible; c, heat flux 
through the coil insulation; L, heat influx from the surrounding medium; max, maximum; %, 
cooling time of the spiral channel with a variable temperature of the coolant at the inlet. 
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EXPERIMENTAL DEVICE FOR MEASUREMENT OF ISOBARIC 

SPECIFIC HEAT OF ELECTROLYTES AT HIGH STATE PARAMETERS 

Ya. M. Naziev, M. M. Bashirov, 
and Yu. A. Badalov 

UDC 536.2.083 

Principles of operation and construction of an experimental device for mea- 
surement of isobaric specific heat of liquids (electrolytes) at high pres- 
sures are described. 

The major shortcomings of existing calorimeters were pointed out in [i], which proposed 
a new pulse-regular method for simultaneous measurement of isobaric specific heat cp, thermal 
conductivity %, and thermal diffusivity a of electrolytes. This method permitted measure- 
ments over wide ranges of temperature and pressure. In the present study this method is 
realized experimentally for measuring isobaric specific heat of liquids. 
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